A Blog by

People Sometimes Like Stinky Things—Here’s Why

Updated September 30, 2015

A corpse flower smells like a heady mix of rotten fish, sewage, and dead bodies. It’s a stench meant to draw flies, but just as surely, it draws tourists. Braving a blustery Chicago night, thousands of people lined up Tuesday for a whiff of a corpse flower named Alice at the Chicago Botanic Garden.

This woman shows a classic "disgusted" face in a video about the 2013 blooming of a corpse flower (see video, top).
This woman shows a classic “disgusted” face in a video about the 2013 blooming of a corpse flower (see video, top).

In fact, the demand to see and smell a corpse flower is so great that botanical gardens now vie to own one. Gardeners lavish them with care, hoping to force more stinky blooms from a plant whose scent is so rare (up to a decade between flowerings) and so fleeting (eight to 12 hours) that visitors are often disappointed to miss peak stench.

But why do people want to smell the thing? The reaction is usually the same: the anticipation, the tentative sniff, then the classic scrunched-up face of disgust. And yet everyone seems happy to be there.

It turns out there’s a name for this: benign masochism.

Psychologist Paul Rozin described the effect in 2013 in a paper titled “Glad to be sad, and other examples of benign masochism.” His team found 29 examples of activities that some people enjoyed even though, by all logic, they shouldn’t. Many were common pleasures: the fear of a scary movie, the burn of chili pepper, the pain of a firm massage. And some were disgusting, like popping pimples or looking at a gross medical exhibit.

The key is for the experience to be a “safe threat.”

“A roller coaster is the best example,” Rozin told me. “You are in fact fine and you know it, but your body doesn’t, and that’s the pleasure.” Smelling a corpse flower is exactly the same kind of thrill, he says.

It’s a bit like kids playing war games, says disgust researcher Valerie Curtis of the London School of Hygiene and Tropical Medicine. “The ‘play’ motive leads humans (and most mammals, especially young ones) to try out experiences in relative safety, so as to be better equipped to deal with them when they meet them for real,” she says.

People around the world make the same face when disgusted, with a downturned mouth and sometimes a protruding tongue.
People around the world make the same face when disgusted, with a downturned mouth and sometimes a protruding tongue.

So by smelling a corpse flower, she says, we’re taking our emotions for a test ride. “We are motivated to find out what a corpse smells like and see how we’d react if we met one.”

Our sense of disgust, after all, serves a purpose. According Curtis’ theory of disgust, outlined in her insightful book “Don’t Look, Don’t Touch, Don’t Eat,” the things most universally found disgusting are those that can make us sick. You know, things like a rotting corpse.

Yet our sense of disgust can be particular. People, it seems, are basically fine with the smell of their own farts (but not someone else’s). Disgust tends to protect us from the threat of others, while we feel fine about our own grossness.

Then there are variations in how we perceive odors. Some smells are good only in small doses, as perfumers know. Musk, for instance, is the base note of many perfumes but is considered foul in high concentrations. Likewise for indole, a molecule that adds lovely floral notes to perfumes but is described as “somewhat fecal and repulsive to people at higher concentrations.”

University of California Botanical Garden
University of California Botanical Garden

No one has yet, to my knowledge, tried out a low dose of corpse flower in a perfume (though you can try on an indole brew in “Charogne,” which translates to “Carrion,” by Etat Libre d’Orange). But someone could. There’s an entire field of perfumery—called headspace technology, it was pioneered by fragrance chemist Roman Kaiser in the 1970s—that’s dedicated to capturing a flower’s fragrance in a glass vial and then re-creating the molecular mix chemically. I would love to see someone give eau de corpse flower a whirl, if only they can find a headspace vial large enough.

The stench of a corpse flower, after all, is a mix of compounds, including indole and sweet-smelling benzyl alcohol in addition to nasties like trimethylamine, found in rotting fish. So I’d be very curious to know if a small amount of corpse flower would be a smell we would hate, or maybe love to hate.

I’ll leave you with my favorite example of a “love to hate” smell, from my childhood in the 1980s. At a time when I loved Strawberry Shortcake dolls and scratch-and-sniff stickers, the boys in my class were playing with He-Man dolls. Excuse me, action figures. And among the coolest, and grossest, of them was Stinkor. He was black and white like a skunk, and his sole superpower was to reek so badly that his enemies would flee, gagging.

To give Stinkor his signature stink, Mattel added patchouli oil to the plastic he was molded from. (This confirms the feelings of patchouli-haters everywhere.) It meant that you couldn’t wash Stinkor’s smell away, and it wouldn’t fade like my Strawberry Shortcakes did. The smell was one with Stinkor. And of course, children loved him.

Writer Liz Upton describes the Stinkor figure that she and her brother adored (their mother did not). The kids would pull Stinkor out and scratch at his chest, smelling him again and again. “Something odd was going on here,” Upton writes. “Stinkor smelled dreadful, but his musky tang was strangely addictive.”

If you’re the kind of benign masochist who wants to smell Stinkor for yourself, you can pay $125 or more for a re-released collector’s edition Stinkor—or you can just find an old one on eBay. The amazing thing: 30 years later, the original Stinkor dolls still stink. And people still buy them.

A Blog by

Meet the woman without fear

SMKentucky, USA. A woman known only as SM is walking through Waverly Hills Sanatorium, reputedly one of the “most haunted” places in the world. Now a tourist attraction, the building transforms into a haunted house every Halloween, complete with elaborate decorations, spooky noises and actors dressed in monstrous costumes. The experience is silly but still unnerving and the ‘monsters’ often manage to score frights from the visitors by leaping out of hidden corners.

But not SM. While others show trepidation before walking down empty corridors, she leads the way and beckons her companions to follow. When monsters leap out, she never screams in fright; instead, she laughs, approaches and talks to them. She even scares one of the monsters by poking it in the head.

SM is a woman without fear. She doesn’t feel it. She has been held at knifepoint without a tinge of panic. She’ll happily handle live snakes and spiders, even though she claims not to like them. She can sit through reels of upsetting footage without a single start. And all because a pair of almond-shaped structures in her brain – amygdalae – have been destroyed.


A Blog by

When pain is pleasant

Do-not-pressEver prodded at an injury despite the fact you know it will hurt? Ever cook an incredibly spicy dish even though you know your digestive tract will suffer for it? If the answers are yes, you’re not alone. Pain is ostensibly a negative thing but we’re often drawn to it. Why?

According to Marta Andreatta from the University of Wurzburg, it’s a question of timing. After we experience pain, the lack of it is a relief. Andreatta thinks that if something happens during this pleasurable window immediately after a burst of pain, we come to associate it with the positive experience of pain relief rather than the negative feeling of the pain itself. The catch is that we don’t realise this has happened. We believe that the event, which occurred so closely to a flash of pain, must be a negative one. But our reflexes betray us.

Andreatta’s work builds on previous research with flies and mice. If flies smell a distinctive aroma just before feeling an electric shock, they’ll learn to avoid that smell. However, if the smell is released immediately after the shock, they’re actually drawn to it. Rather than danger, the smell was linked with safety. The same trick works in mice. But what about humans?


A Blog by

Different neuron networks control fear of different threats

Blogging on Peer-Reviewed ResearchIf you wanted to turn a rat into a fearless critter, unfazed by cats or bigger rats, the best way would be to neutralise a small pair of tiny structures in its brain called the dorsal premammillary nuclei, orPMD. According to new research by Simone Motta at the University of Sao Paolo, these small regions, nestled within a rat’s hypothalamus, control its defensive instincts to both predators and other rats.

But not all neurons in the PMD are equal. It turns out that the structures are partitioned so that different bits respond to different threats. The front and side parts (the ventrolateral area) are concerned with threats from dominant and aggressive members of the same species. On the other hand, the rear and middle parts (the dorsomedial area) process the threats of cats and other predators. And both areas are distinct from other networks that deal with the fear of painful experiences, such as electric shocks.

This complexity is surprising. Until now, scientists have mostly studied the brain’s fear system by focusing on an area called the amydgala, which plays a role in processing memories of emotional reactions.  And they have generally assumed that fearful responses are driven by the same networks of neurons, regardless of the threat’s nature.

There’s good reason to think that. Hesitating in the face of danger is a sure-fire way to lose one’s life, so animals respond in a limited number of instinctive ways when danger threatens. They freeze to avoid detection, flee to outrun the threat, or fight to confront it. These automatic “freeze, fight or flight” responses are used regardless of the nature of the threat. Rats, for example, behave in much the same way when they are menaced by cats or electrified floors alike, and actually find it very difficult to do anything else.

This limited repertoire of action convinced scientists that animals process different fears in the same way, relying on the same network of neurons to save their hides from any and all threats. Motta’s research shows that this idea is wrong, certainly for rats and probably for other mammals too. The brain’s fear system isn’t a one-size-fits-all toolkit; it has different compartments that respond specifically to different classes of threats.


A Blog by

More on propranolol – the drug that doesn’t erase memories

The mainstream media are just queuing up to fail in their reporting of the propranolol story from a couple of days ago. To reiterate:

Propranolol is commonly used to treat high blood pressure and prevent migraines in children. But Merel Kindt and colleagues from the University of Amsterdam have found that it can do much more. By giving it to people before they recalled a scary memory about a spider, they could erase the fearful response it triggered.

The critical thing about the study is that the entire memory hadn’t been erased in a typical sci-fi way. Kindt had trained the volunteers to be fearful of spidery images by pairing them with electric shocks. Even after they’d been given propranolol, they still expected to receive a shock when they saw a picture of a spider – they just weren’t afraid of the prospect. The drug hadn’t so much erased their memories, as dulled their emotional sting. It’s more like removing all the formatting from a Word document than deleting the entire file.

The drug is not a “memory-wiping pill” (Guardian). It cannot “erase bad/painful memories” (Sun/ Fox News/ Metro/ Daily Mail) and it won’t give you a “spotless mind” (Scotsman). Perhaps it’s unsurprising given that massive wire agencies said similar things. The Press Association led with claims that the drug can “erase fearful memories“. Reuters at least said more cautiously that it was a “step towards erasing bad memories“.

To quote the person who actually did the research (and thanks Merel for chiming in on the earlier post): 

“There was no memory erasure, just elimination of the fearful response.”

The problem with all of this, of course, is that people have straw-manned the research and are falling over themselves to publish trite editorials that (a) are irrelevant to the actual study and (b) serve to stoke public outrage over an ethical dilemma of their own concoction.

There are exceptions. The Boston Globe got it right and has a brilliant bit at the end that lays out in four simple sentences the bottom line, cautions, what’s next, and where the research was published. It has however accompanied the article with an incongruous photo of a koala, presumably some sort of mix-up with the Australian bushfire story.

The mental health charity MIND released a long and well-considered statement, which showed that they had actually read the paper and understood the science. The charity’s CEO, Paul Farmer, said:

“This is fascinating research that could transform the treatment for phobias and post traumatic stress disorder. Around 10 million people in the UK have a phobia and about 3.5% of the population will be affected by post traumatic stress disorder at some point yet our understanding of how to treat these conditions is still limited. While we welcome any advancement in this field we should also exercise caution before heralding this as a miracle cure.

“Eradicating emotional responses is clearly an area we would need to be very careful about. It could affect people’s ability to respond to dangerous situations in the future and could even take away people’s positive memories. We would not want to see an ‘accelerated Alzheimer’s’ approach.

“We still have limited research on how to treat complex mental health problems, with the focus often on pharmacological solutions. Drugs are a somewhat sledgehammer approach and can have unintended consequences. We know from other psychiatric drugs, for example antipsychotics and antidepressants, that individuals react in hugely varied ways to treatments and are often vulnerable to unpleasant side effects.

“We would need to see much more research into the risks and benefits into this treatment before it becomes a reality.”

All of that was culled by the BBC into the following:

But British experts questioned the ethics of tampering with the mind.

Paul Farmer, chief executive of mental health charity Mind, said he was concerned about the “fundamentally pharmacological” approach to people with problems such as phobias and anxiety.

He said the procedure might also alter good memories and warned against an “accelerated Alzheimer’s” approach.

Do you think it carries the same meaning or sense?

A Blog by

Fearless mice are neglectful mothers but social butterflies

Blogging on Peer-Reviewed ResearchWe like to idolise fearlessness and we equate it to bravery but there is a fine line between that and stupidity. Immunity to the pangs of fear would leave someone unable to assess threats to themselves and to other people, which means that fear not only has consequences for an individual but for their entire social circle. Guillaume Martel and colleagues from Rutgers University demonstrated these far-reaching consequences by examining a special group of mice which had been genetically engineered to be fearless.

The_Scream.jpgMartel’s team focused their attention on the amygdalae, a pair of almond-shaped structures, one in each half of the brain, that play an important role in emotion, and particularly in creating and storing memories linked to emotional events. Each amygdala can be divided up into a few distinct regions depending on their role and which other parts of the brain they connect to. One of these regions – the basolateral complex, or BLA- is specifically involved in learning about fear.

The team worked with mice that were missing a gene called stathmin, which is particularly active in the basolateral amygdala. In previous research, they had already showed that removing this gene switches interferes with a mouse’s ability to fear. Not only are they inherently bolder than their normal littermates, they also fail to record long-term memories about frightening experiences.

This time, Martel showed that the loss of stathmin also turns female mice into neglectful ones. In a normal situation, a virgin female would react strongly to the sight of abandoned pups, even foster ones. If three isolated pups are placed in the far corner of a female’s cage, she would quickly bring them over to her nest within about three minutes. But not if her basolateral amygdalae isn’t working properly -the stathmin­-less mice took much longer (about 10 minutes or so) to retrieve the pups.


A Blog by

Fearful facial expressions enhance our perception

Blogging on Peer-Reviewed ResearchShow someone a piece of rotting food and their reaction will be visibly similar the world over. Their eyes will close, their noses will wrinkle and their mouths will tighten, all part of a universal expression of disgust. Darwin himself was struck by the universal nature of human facial expressions – from the busiest of cities to the most isolated of villages, smiles and frowns are recognisable, done in the same way and carry the same meaning.

Scream.jpgFacial expressions are massively important for the social lives of humans and it should come as no surprise that some parts of our brain are dedicated to interpreting the small shifts in facial muscles that betray our emotions. In this light, it makes sense that expressions should be universal, but that doesn’t tell us why they take the form they do. Why is it a smile that indicates happiness and not anger, or why should wide eyes signify fear or surprise and not disgust?

A new study reveals part of the answer and shows that it’s not an arbitrary fluke that certain emotions are tied to specific movements of our facial muscles. Joshua Susskind from the University of Toronto has found that expressions of fear and disgust are adaptive and serve to alter the experiences of our senses.

Fear creates a need for watchfulness to detect potential threats and fearful expressions help with this by widening the eyes and nostrils to increase the information available to the senses. The opposite is true for disgust, which is more about rejecting information that you don’t want. And accordingly, disgusted expressions serve to restrict our perceptions.