3-D Scans Reveal Caterpillars Turning Into Butterflies

The transformation from caterpillar to butterfly is one of the most exquisite in the natural world. Within the chrysalis, an inching, cylindrical eating machine remakes itself into a beautiful flying creature that drinks through a straw.

This strategy—known as holometaboly, or complete metamorphosis—partitions youngsters and adults into completely different worlds, so that neither competes with the other. It’s such a successful way of life that it’s used by the majority of insects (and therefore, the majority of all animals). Butterflies, ants, beetles and flies all radically remodel their bodies within a pupa as they develop from larvae to adults.

But what goes on inside a pupa? We know that a larva releases enzymes that break down many of its tissues into their constituent proteins. Textbooks will commonly talk about the insect dissolving into a kind of “soup”, but that’s not entirely accurate. Some organs stay intact. Others, like muscles, break down into clumps of cells that can be re-used, like a Lego sculpture decomposing into bricks. And some cells create imaginal discs—structures that produce adult body parts. There’s a pair for the antennae, a pair for the eyes, one for each leg and wing, and so on. So if the pupa contains a soup, it’s an organised broth full of chunky bits.

We know this because scientists have dissected lots of pupae, although they’ve mostly trained their scalpels on fruit flies and blowflies.  By its nature, such work always destroys the insect that’s being observed. It also only provides a snapshot in time. If you want to work out what happens as metamorphosis progresses, you need to cut open many pupae that you think are at different stages of development.

But now, two teams of scientists have started to captured intimate series of images showing the same caterpillars metamorphosing inside their pupae. Both teams used a technique called micro-CT, in which X-rays capture cross-sections of an object that can be combined into a three-dimensional virtual model.

By dissecting these models rather than the actual insects, the teams could see the structures of specific organs, like the guts or breathing tubes. They could also watch the organs change over time by repeatedly scanning the same chrysalis over many days. And since insects tolerate high doses of radiation, this procedure doesn’t seem to harm them, much less kill them.

One team analysed the caterpillar of the stunning blue morpho just before it started metamorphosis and a week into the process. They analysed the structure of the tracheae—the network of breathing tubes that carry oxygen throughout the insect’s body. Their work was done with the BBC as part of a documentary on metamorphosis—it was publicised in March but hasn’t been published yet.

The second project had its origins in crime-fighting. Thomas Simonsen from London’s Natural History Museum started using micro-CT to look at the pupae for blowflies. These insects lay their eggs on fresh corpses, whether it’s “someone who has been murdered or a deer in a forest”. They appear so predictably that you can estimate a body’s time of death based on where its blowflies are in their life cycle. This gets trickier once the flies turn into pupae, since those all look the same from the outside. But by scanning their insides using micro-CT, Simonsen hoped to get better estimates for how old they are.

From flies, he turned his attention to his favourite subjects—butterflies and moths. He worked with Tristan Rowe and Russell Garwood from the University of Manchester, who regularly scanned the cocoons of painted lady butterflies, some every day.

Painted lady butterfly chrysalis during metamorphosis. Breathing tubes in blue; guts in red.

Painted lady butterfly chrysalis during metamorphosis. Breathing tubes in blue; guts in red.

The scans showed that the caterpillar’s guts quickly change shape, becoming narrower, shorter and more convoluted. Meanwhile, the tracheal tubes become bigger, although their arrangement barely changes. The common wisdom is that “almost everything is massively reorganised in the pupa,” says Simonsen. That’s largely true, but not for the tracheal system. From its first day as a chrysalis, the painted lady already has the breathing tubes of an adult butterfly. “If there is remodelling, it happens very quickly in the first hours of pupation,” says Garwood. Alternatively, it happens when the butterfly is still a caterpillar.

This doesn’t drastically change what we knew about metamorphosis. There are some small insights—it seems that midway through the transformation, the big breathing tube that delivers oxygen to the flight muscles reattaches itself to a different set of openings on the insect’s torso. But the big picture stays the same. “I think it will provide instructive images for textbooks, but I don’t think it provided surprising new insights,” says David Champlin at the University of Southern Maine, who studies metamorphosis.

There are other limitations. The technique’s resolution is rather low. You cannot stain individual tissues or proteins with coloured molecules, while still keeping the animal alive. And the scanners can only pick up a limited number of organs. Brains and nerves, for example, are invisible to them, although Garwood hopes that new technological advances will overcome that hurdle.

Micro-CT scans may not revolutionise what we know about metamorphosis but Garwood hopes that their advantages will give scientists new options for their experiments. For example, the scans use up fewer individuals, since you can scan the same ones over time. This could free up insect specialists to move beyond the usual suspects like fruit flies, and study the development of rare or valuable species without harming them. They could look at how pesticides affect the development of bees, or how mutations in different genes change the process of metamorphosis. Champlin agrees. “It would be great to compare the normal animal with a variety of mutant strains defective for specific genes,” he says.

Reference: Lowe, Garwood, Simonsen, Bradley & Withers. 2013. Metamorphosis revealed: three-dimensional imaging inside a living chrysalis. Interface. http://dx.doi.org/10.1098/rsif.2013.0304

There are 19 Comments. Add Yours.

  1. MrO
    May 14, 2013

    thanks Ed! beautiful video, very good article (as always)

  2. Patrícia Beldade
    May 15, 2013

    The DOI URL seems to be broken. Typo or something else? I’d really like to see this paper…

  3. jamesparderson
    May 15, 2013

    this is just a slide show, i thought it was going to be something interesting like a time lapse.

  4. Nathan Myers
    May 15, 2013

    NMRI scanning ought to address the limitations noted. That’s supposed to be way, way more expensive than x-ray tomography, but I wonder: could a scanner with an insect-sized bed be a lot cheaper to build and operate? It seems like there must be lots of things worth scanning at microscopically fine resolution with overall dimensions around ~2mm .

  5. Ruth Milne
    May 16, 2013

    The link seems to be working for us. But just in case you can read the article for free here (may have to c+p link if it breaks between lines)

  6. Kevin Sweeney
    May 17, 2013

    Amazing. Also lead me to research how complete metamorphosis could have evolved. Thank you!! http://www.scientificamerican.com/article.cfm?id=insect-metamorphosis-evolution

  7. brenda gibson
    May 19, 2013

    micro-ct gives all a chance to see an amazing process.

  8. Robert Parks
    May 23, 2013

    Beautiful well presented.

  9. Rune Riktor
    May 25, 2013

    This transition is among the most inspiring wonders of nature. I think this is a good model for us humans too

  10. Dr.Manoj Kumar Shrivastav
    May 26, 2013

    Thanks for good article and Beautiful Video.

  11. Tomas
    June 9, 2013

    well I just learn something new today.

  12. CC
    July 1, 2013

    It would be nice if there were some labels like what the internal structures are…

  13. Lynn Podany
    July 18, 2013

    My 86-year-old Mom received a kit with the caterpillar in a mesh container w/ some type of microscope to view the process. I live in another state and unable to study the time process. Please help me to know how long a period going from caterpillar to cocoon & then to the beautiful butterfly. I have no idea if it is a 2-day process or weeks and do not want my Mother to miss out. Any help of timing would be greatly appreciated.

  14. Barbara Heaton
    October 31, 2013

    A fascinating technique. You have allowed us to more intimately witness this miracle of metamorphosis . I am an artist and your work inspires me to create some new paintings with so much more understanding of this thrilling process. Thank you.

  15. Luke Huang
    January 21, 2015

    I still can’t wrap my head around the fact that pupae “soupify” (liquify) into some chunky, LIVING, goo.

  16. Carol Lutsinger
    April 21, 2015

    In my 6th grade classroom today we actually watched the chrysalis transformation. It was a caterpillar in the morning and by 2 it was a chrysalis…in just a few moments. The kids and I were spellbound.

  17. Emme @ Green Global Travel
    July 9, 2015

    This is a great depiction of a beautiful process. It is amazing how technology allows us to explore transformations like this that are difficult to observe with the naked human eye. Thanks for the post!

  18. Christine Brownlie
    August 24, 2015

    I have long wondered about this amazing process and am delighted to see this. Thanks!

  19. Lesley
    August 24, 2015

    The article says that you can’t stain living tissues with coloured dyes without harming them, but you can. There are now quite a few vital stains that do no harm on the cellular level, in a wide range of colours.

Add Your Comments

All fields required.

Related Posts